Bài 1: Lũy thừa

Tóm tắt lý thuyết

2.1. Khái niệm lũy thừa

a) Lũy thừa với số mũ nguyên

Cho \(n\) là một số nguyên dương.

  • Với \(a\) là số thực tùy ý, lũy thừa bậc \(n\) của \(a\) là tích của \(n\) thừa số \(a\): \({a^n} = \underbrace {a.a……a}_n\)
  • Với \(a\ne0\):
    • ​\(a^0=1\)
    • ​\(a^{-n}=\frac{1}{a^n}\)

Trong biểu thức \(a^m\), ta gọi \(a\) là cơ số, số nguyên \(m\) là số mũ.

  • Chú ý: 
    • \(0^0\) và \(0^n\) không có nghĩa.
    • Lũy thừa với số mũ nguyên có các tihs chất tương tự của lũy thừa với số mũ nguyên dương.

b) Lũy thừa với số mũ hữu tỉ

Cho \(a\) là số thực dương và số hữu tỉ \(r=\frac{m}{n}\) trong đó \(m\in\mathbb{Z},n\in\mathbb{N},n\geq 2.\) Lũy thừa với số mũ \(r\) là số \(a^r\) xác đinh bởi: \({a^r} = {a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\).

c) Lũy thừa với số mũ thực

Cho \(a\) là một số dương, \(\alpha\) là một số vô tỉ:

Ta gọi giới hạn của dãy số \(\left( {{a^{{r_n}}}} \right)\) là lũy thừa của \(a\) với số mũ \(\alpha\), kí hiệu là \(a^{\alpha}.\)

\({a^\alpha } = \mathop {\lim }\limits_{n \to + \infty } {a^{{r_n}}}\) với \(a = \mathop {\lim }\limits_{n \to + \infty } {r_n}\).

2.2. Các tính chất quan trọng của lũy thừa

Với số thực \(a>0\) ta có các tính chất sau:

  • \(a^x.a^y=a^{x+y} \ \ \ x, y\in \mathbb{R}\)
  • \(\frac{a^x}{a^y}=a^{x-y} \ \ \ x, y \in \mathbb{R}\)
  • \((a^x)^y=a^{xy} \ \ \ x,y\in R\)
  • \(\sqrt[x]{a^y}=a^{\frac{y}{x}} \ \ \ x\in N, x\geq 2, y\in R\)
  • \((a.b)^x=a^x.b^x\)
  • \(\left ( \frac{a}{b} \right )^y=\frac{a^y}{b^y}\)

2.3. So sánh hai lũy thừa

Cho số thực \(a\):

  • Nếu \(a>1\) thì \(a^x > a^y\Leftrightarrow x>y\).
  • Nếu \(0 a^y\Leftrightarrow x

Bài tập minh họa


Ví dụ 1: 

Rút gọn biểu thức: \(A = \frac{{{a^{ – n}} + {b^{ – n}}}}{{{a^{ – n}} – {b^{ – n}}}} – \frac{{{a^{ – n}} – {b^{ – n}}}}{{{a^{ – n}} + {b^{ – n}}}}\left( {ab \ne 0;a \ne \pm b} \right)\)

Lời giải:

\(A = \frac{{{a^{ – n}} + {b^{ – n}}}}{{{a^{ – n}} – {b^{ – n}}}} – \frac{{{a^{ – n}} – {b^{ – n}}}}{{{a^{ – n}} + {b^{ – n}}}} = \frac{{{a^n} + {b^n}}}{{{a^n}{b^n}\left( {\frac{{{b^n} – {a^n}}}{{{a^n}{b^n}}}} \right)}} – \frac{{{b^n} – {a^n}}}{{{a^n}{b^n}\left( {\frac{{{a^n} + {b^n}}}{{{a^n}{b^n}}}} \right)}}\)

\(= \frac{{{{\left( {{a^n} + {b^n}} \right)}^2} – {{\left( {{b^n} – {a^n}} \right)}^2}}}{{\left( {{a^n} + {b^n}} \right)\left( {{b^n} – {a^n}} \right)}} = \frac{{4{a^n}{b^n}}}{{{b^{2n}} – {a^{2n}}}}\)

Ví dụ 2: 

Cho a,b là các số thực dương .Rút gọn biểu thức sau:

a) \(\left( {1 – 2\sqrt {\frac{a}{b}} + \frac{b}{a}} \right):{\left( {{a^{\frac{1}{2}}} – {b^{\frac{1}{2}}}} \right)^2}\)

b) \(\frac{{{a^{\frac{1}{4}}} – {a^{\frac{9}{4}}}}}{{{a^{\frac{1}{4}}} – {a^{\frac{5}{4}}}}} – \frac{{{b^{ – \frac{1}{2}}} – {b^{\frac{3}{2}}}}}{{{b^{\frac{1}{2}}} + {b^{ – \frac{1}{2}}}}}\)

Lời giải:

a) \(\left( {1 – 2\sqrt {\frac{a}{b}} + \frac{b}{a}} \right):{\left( {{a^{\frac{1}{2}}} – {b^{\frac{1}{2}}}} \right)^2} = {\left( {1 – \sqrt {\frac{a}{b}} } \right)^2}:\left( {\sqrt a – \sqrt b } \right)\)

\(= \frac{{{{\left( {\sqrt b – \sqrt a } \right)}^2}}}{b}.\frac{1}{{{{\left( {\sqrt a – \sqrt b } \right)}^2}}} = \frac{1}{b}\)

b) \(\frac{{{a^{\frac{1}{4}}} – {a^{\frac{9}{4}}}}}{{{a^{\frac{1}{4}}} – {a^{\frac{5}{4}}}}} – \frac{{{b^{ – \frac{1}{2}}} – {b^{\frac{3}{2}}}}}{{{b^{\frac{1}{2}}} + {b^{ – \frac{1}{2}}}}} = \frac{{{a^{\frac{1}{4}}}\left( {1 – {a^2}} \right)}}{{{a^{\frac{1}{4}}}\left( {1 – a} \right)}} – \frac{{{b^{ – \frac{1}{2}}}\left( {1 – {b^2}} \right)}}{{{b^{ – \frac{1}{2}}}\left( {{b^2} – 1} \right)}} = 1 + a + 1 = a + 2\)

Ví dụ 3: 

Viết dưới dạng lũy thừa với số mũ hữu tỷ các biểu thức sau:

a) \(A = \sqrt[5]{{2\sqrt[3]{{2\sqrt 2 }}}}\)

b) \(B = \sqrt {a\sqrt {a\sqrt {a\sqrt a } } } :{a^{\frac{{11}}{{16}}}}\quad \left( {a > 0} \right)\)

Lời giải:

a) \(A = \sqrt[5]{{2\sqrt[3]{{2\sqrt 2 }}}} = \left\{ {{{\left[ {{{\left( {{2^{\frac{1}{2}}}.2} \right)}^{\frac{1}{3}}}.2} \right]}^{\frac{1}{5}}}} \right\}\)

\(= {\left[ {{{\left( {{2^{\frac{3}{2}}}} \right)}^{\frac{1}{3}}}.2} \right]^{\frac{1}{5}}} = {\left( {{2^{\frac{1}{2}}}.2} \right)^{\frac{1}{5}}} = {2^{\frac{3}{2}\frac{1}{5}}} = {2^{\frac{3}{{10}}}}\)

b) \(B = \sqrt {a\sqrt {a\sqrt {a\sqrt a } } } :{a^{\frac{{11}}{{16}}}} = {\left\{ {{{\left[ {{{\left( {{a^{\frac{3}{2}}}} \right)}^{\frac{1}{2}}}a} \right]}^{\frac{1}{2}}}.a} \right\}^{\frac{1}{2}}}:{a^{\frac{{11}}{{16}}}}\)

\(= {\left[ {{{\left( {{a^{\frac{3}{4} + 1}}} \right)}^{\frac{1}{2}}}.a} \right]^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{8} + 1}}} \right)^{\frac{1}{2}}}:{a^{\frac{{11}}{{16}}}} = \frac{{{a^{\frac{{15}}{{16}}}}}}{{{a^{\frac{{11}}{{16}}}}}} = {a^{\frac{1}{4}}}\)

Ví dụ 4:

Cho a là số thực dương, đơn giản các biểu thức sau:

a) \({a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 – 1}}\)

b) \(\frac{{{a^{2\sqrt 2 }} – {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} – {b^{\sqrt 3 }}} \right)}^2}}} + 1\)

Lời giải:

a) \({a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 – 1}} = {a^{\sqrt 2 }}{\left( {{a^{ – 1}}} \right)^{\sqrt 2 – 1}} = {a^{\sqrt 2 }}{a^{1 – \sqrt 2 }} = a\)

b) \(\frac{{{a^{2\sqrt 2 }} – {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} – {b^{\sqrt 3 }}} \right)}^2}}} + 1 = \frac{{\left( {{a^{\sqrt 2 }} – {b^{\sqrt 3 }}} \right)\left( {{a^{\sqrt 2 }} + {b^{\sqrt 3 }}} \right)}}{{{{\left( {{a^{\sqrt 2 }} – {b^{\sqrt 3 }}} \right)}^2}}} + 1\)

\(= \frac{{{a^{\sqrt 2 }} + {b^{\sqrt 3 }} + {a^{\sqrt 2 }} – {b^{\sqrt 3 }}}}{{\left( {{a^{\sqrt 2 }} – {b^{\sqrt 3 }}} \right)}} = \frac{{2{a^{\sqrt 2 }}}}{{{a^{\sqrt 2 }} – {b^{\sqrt 3 }}}}\)

Ví dụ 5:

Không dùng máy tính bỏ túi, hãy so sánh các cặp số sau:

a) \(\sqrt[4]{{13}}\; \vee \;\sqrt[5]{{23}}\)

b) \({\left( {\frac{1}{3}} \right)^{\sqrt 3 }}\; \vee \;{\left( {\frac{1}{3}} \right)^{\sqrt 2 }}\)

Lời giải:

a) Ta có: \(\left\{ \begin{array}{l} \sqrt[4]{{13}} = \sqrt[{20}]{{{{13}^5}}} = \sqrt[{20}]{{371.293}}\\ \sqrt[5]{{23}} = \sqrt[{20}]{{{{23}^4}}} = \sqrt[{20}]{{279.841}} \end{array} \right. \Rightarrow \sqrt[4]{{13}} > \sqrt[5]{{23}}\)

b) Ta có: \(\sqrt 3 > \sqrt 2 \Rightarrow {\left( {\frac{1}{3}} \right)^{\sqrt 3 }} < {\left( {\frac{1}{3}} \right)^{\sqrt 2 }}\)