Bài 8: Rút gọn biểu thức chứa căn bậc hai

Tóm tắt lý thuyết

Để rút gọn biểu thức có chứa căn bậc hai, ta cần vận dụng thích hợp các phép tính và các phép biến đổi đã biết

Ví dụ 1:

Chứng minh đẳng thức \((1+\sqrt{2}+\sqrt{3})(1+\sqrt{2}-\sqrt{3})=2\sqrt{2}\)
Hướng dẫn: 
Ở bài toán này, ta có thể dùng phương pháp nhân từng thừa số vào rồi cộng các kết quả lại với nhau.
Tuy nhiên, ta có thể quan sát và vận dụng theo cách sau:
\((1+\sqrt{2}+\sqrt{3})(1+\sqrt{2}-\sqrt{3})=(1+\sqrt{2})^2-(\sqrt{3})^2=1+2\sqrt{2}+2-3=2\sqrt{2}\)

Ví dụ 2:

Rút gọn biểu thức \(\frac{x^2-3}{x+\sqrt{3}}; x\neq -\sqrt{3}\)

Hướng dẫn: 

\(\frac{x^2-3}{x+\sqrt{3}}=\frac{(x-\sqrt{3})(x+\sqrt{3})}{x+\sqrt{3}}=x-\sqrt{3}\)

 

Bài tập minh họa





2.1. Bài tập cơ bản

Bài 1: Rút gọn biểu thức: \(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}+\sqrt{5}\)

Hướng dẫn: \(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}+\sqrt{5}=\sqrt{\frac{5^2}{5}}+\sqrt{\frac{20}{2^2}}+\sqrt{5}=3\sqrt{5}\)

Bài 2: Rút gọn biểu thức: \(0,1\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{50}\)

Hướng dẫn:\(0,1\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{50}\)

\(=0,1\sqrt{10^2.2}+\sqrt{2.}\sqrt{0,16}+0,4\sqrt{5^2.2}=\sqrt{2}+0,4\sqrt{2}+2\sqrt{2}=0,4\sqrt{2}+3\sqrt{2}\) \(=3,4.\sqrt{2}\)

Bài 3: Chứng minh đẳng thức: \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)

Hướng dẫn: \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)\(=\frac{3\sqrt{3}}{\sqrt{2}}+\frac{2\sqrt{2}}{\sqrt{3}}-\frac{4\sqrt{3}}{\sqrt{2}}\)\(=\frac{9}{\sqrt{6}}+\frac{4}{\sqrt{6}}-\frac{12}{\sqrt{6}}=\frac{\sqrt{6}}{6}\)

 

2.2. Bài tập nâng cao

Bài 1: Rút gọn biểu thức \(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9} ; x\not\equiv \pm 3\)

Hướng dẫn: \(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\)\(=\frac{2x(x-3)}{(x+3)(x-3)}+\frac{(x+1)(x+3)}{(x+3)(x-3)}-\frac{3-11x}{(x+3)(x-3)}\)

\(=\frac{2x^2-6x+x^2+4x+3-3+11x}{(x+3)(x-3)}\)\(=\frac{3x^2+9x}{(x+3)(x-3)}=\frac{3x}{x-3}\)

Bài 2: Cho biểu thức \(A=\left ( \frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1} \right ):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1} ; a>0,a\neq 1\)

\(B=1\)

Hãy so sánh A và B

Hướng dẫn: Ta có: \(A=\left ( \frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1} \right ):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)\(=\frac{1+\sqrt{a}}{\sqrt{a}(\sqrt{a}-1)}.\frac{(\sqrt{a}-1)^2}{\sqrt{a}+1}\)\(=\frac{\sqrt{a}-1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)

Vì \(a>0\Rightarrow \frac{1}{\sqrt{a}}>0\Rightarrow\)\(1-\frac{1}{\sqrt{a}}<1\Rightarrow A