Bài 7: Phương trình quy về phương trình bậc hai

Tóm tắt lý thuyết

1.1. Phương trình trùng phương

Định nghĩa

Phương trình trùng phương là phương trình có dạng: \(ax^4+bx^2+c=0 (a\neq 0)\)

Đây không phải là phương trình bậc hai, nhưng ta có thể đưa về dạng phương trình bậc hai bằng phương pháp đặt ẩn phụ.

Cụ thể là: Đặt \(t=x^2 (t\geq 0)\) lúc đó phương trình trở thành \(at^2+bt+c=0\), chúng ta tiến hành giải phương trình bậc hai rồi so điều kiện, trả về ẩn x của bài toán ban đầu.

1.2. Phương trình chứa ẩn ở mẫu

Các bước để giải phương trình chứa ẩn ở mẫu đã học ở lớp 8

Bước 1: Tìm điều kiện xác định của phương trình

Bước 2: Quy đồng hai vế rồi khử mẫu

Bước 3: Giải phương trình vừa nhận được

Bước 4: So sánh điều kiện ban đầu rồi kết luận nghiệm

1.3. Phương trình tích

Nhắc lại kiến thức đã học ở lớp dưới:

Biến đổi phương trình về dạng \(A.B.C…..=0\) rồi suy ra hoặc \(A=0\) hoặc \(B=0\) hoặc…..

 

Bài tập minh họa





2.1. Bài tập cơ bản

Bài 1: Giải phương trình trùng phương sau: \(x^4-8x^2+7=0\)

Hướng dẫn: Đặt \(t=x^2 (t\geq 0)\)

Khi đó, phương trình trở thành: \(t^2-8t+7=0\)

Giải phương trình bậc hai cơ bản trên, ta được:

\(t=1\) (nhận)\(\Rightarrow x=\pm 1\)

\(t=7\) (nhận)\(\Rightarrow x=\pm \sqrt{7}\)

Bài 2: Giải phương trình sau: \(\frac{x^2-3x+6}{x^2-9}=\frac{1}{x-3}\)

Hướng dẫn: Điều kiện: \(x\neq \pm 3\)

Với điều kiện trên, phương trình trở thành: \(x^2-3x+6=x+3\Leftrightarrow x^2-4x+3=0\)

\(x=1\)(nhận)

\(x=3\)(loại)

Vậy phương trình có nghiệm duy nhất \(x=1\)

Bài 3: Giải phương trình tích sau: \((x-3)(x^4+3x^2+2)=0\)

Hướng dẫn: Với bài toán trên, ta suy ra:

\(x-3=0(1)\) hoặc \(x^4+3x^2+2=0(2)\)

Giải (1) \(\Rightarrow x=3\)

Giải (2), ta thấy rằng đây là một phương trình trùng phương, tiến hành đặt \(t=x^2(t\geq 0)\)

pt (2) trở thành \(t^2+3t+2=0\)

\(t=-1\) (loại)

\(t=-2\) (loại)

Vậy phương trình có nghiệm duy nhất \(x=3\)

2.2. Bài tập nâng cao

Bài 1: Giải phương trình: \((x^2+2x-5)^2=(x^2-x+5)^2\)

Hướng dẫn: Ta sử dụng hằng đẳng thức \(A^2-B^2=(A+B)(A-B)\)

\((x^2+2x-5)^2=(x^2-x+5)^2\)

\(\Leftrightarrow (x^2+2x-5+x^2-x+5)(x^2+2x-5-x^2+x-5)=0\)

\(\Leftrightarrow (2x^2+x)(3x-10)=0\)

Giải các phương trình cơ bản, ta dễ dàng suy ra

\(x=0\) hoặc \(x=-\frac{1}{2}\) hoặc \(x=\frac{10}{3}\)

Bài 2: Giải phương trình \(2x+\sqrt{x}=8-11\sqrt{x}\)

Hướng dẫn: Điều kiện:\(x\geq 0\)

Khi đó, ta đặt \(t=\sqrt{x}(t\geq 0)\)

Phương trình trở thành: \(2t^2+t=8-11t\Leftrightarrow 2t^2+12t-8=0\Leftrightarrow t^2+6t-4=0\)

Giải phương trình bậc hai ẩn t, ta được:

\(t=-3+\sqrt{13}\) (nhận)\(\Rightarrow x=(-3+\sqrt{13})^2=22-6\sqrt{13}\)

\(t=-3-\sqrt{13}\) (loại)

Vậy phương trình có nghiệm duy nhất \(x=22-6\sqrt{13}\)