Bài 4: Góc tạo bởi tia tiếp tuyến và dây cung

Tóm tắt lý thuyết

1.1. Khái niệm

Góc tạo bởi tiếp tuyến và dây cung là góc có đỉnh nằm trên đường tròn, hai cạnh của góc gồm một tia là tiếp tuyến với đường tròn, tia còn lại chứa dây cung.

Góc \(\widehat{BAx}\) (hoặc \(\widehat{BAy}\)) là góc tạo bởi tiếp tuyến và dây cung.

1.2. Định lí

Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn

Cụ thể ở hình trên, \(\widehat{BAx}=\frac {1}{2}\)sđ\(\stackrel\frown{AB}\) (ở đây là cung AB nhỏ)

1.3. Hệ quả

Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung góc nội tiếp cùng chắn một cung thì bằng nhau.

Theo hệ quả của định lí trên: \(\widehat{BAx}=\widehat{BCA}\)

Bài tập minh họa





2.1. Bài tập cơ bản

Bài 1: Cho đường tròn \((O;R)\) và điểm \(A\) trên đường tròn, tiếp tuyến tại \(A\) cắt đường kính \(BC\) của đường tròn tại \(S\). Biết \(\widehat{SAB}=30^0\), tính \(AC\) theo \(R\).

Hướng dẫn:

Ta có \(\widehat{SAB}+\widehat{BAO}=90^0 \Rightarrow \widehat{BAO}=90^0-30^0=60^0\)

\(\bigtriangleup OBA\) cân tại \(O\) có \(\widehat{BAO}=60^0\) nên \(\bigtriangleup BAO\) đều. Suy ra \(BA=OB=R\)

Áp dụng định lí Pytago cho tam giác vuông \(ABC\) ta có \(AC=\sqrt{BC^2-AB^2}=\sqrt{(2R)^2-R^2}=\sqrt{3R^2}=R\sqrt{3}\)

Bài 2: ​Cho đường tròn \((O;R)\) và điểm \(I\) nằm ngoài đường tròn sao cho \(OI=2R\). Điểm \(C\) nằm trên đường tròn. Vẽ tiếp tuyến \(IA\) của đường tròn, gọi \(B\) là giao điểm của \(OI\) và \((O)\) (\(B\) nằm giữa \(O\) và \(I\)). Tính \(\widehat{ACB}\)

Hướng dẫn:

Ta có \(BI=OI-OB=2R-R=R\)

Tam giác vuông \(AOI\) có \(B\) là trung điểm của \(OI\) nên \(BA=BO=BI=R\) suy ra \(\bigtriangleup OBA\) đều (các cạnh đều bằng \(R\))

nên \(\widehat{BOA}=60^0 \Rightarrow \widehat{ACB}=30^0\)

Bài 3: Cho tam giác ABC, vẽ đường tròn tâm O đi qua A và tiếp xúc với BC tại B. Kẻ dây BD song song với AC. Gọi I là giao điểm của CD với đường tròn. Chứng minh: \(\widehat{IAB}=\widehat{ICA}=\widehat{IBC}\)

Hướng dẫn: 

Theo hệ quả định lí góc tạo bởi tiếp tuyến và dây cung ta có \(\widehat{IAB}=\widehat{IBC}=\widehat{IDB}\) (cung chắn \(\stackrel\frown{IB}\))

Mặt khác, \(\widehat{IDB}=\widehat{ICA}\) (do \(BD//AC\))

Từ (1) và (2) suy ra \(\widehat{IAB}=\widehat{ICA}=\widehat{IBC}\) (đpcm)

2.2. Bài tập nâng cao

Bài 1: Cho đường tròn \((O)\) và điểm \(M\) nằm ngoài đường tròn, từ \(M\) vẽ cát tuyến \(MAB\) đến đường tròn. \(C\) là điểm trên đường tròn khác \(A\) và \(B\). Chứng minh rằng: \(MC\) là tiếp tuyến của đường tròn \((O)\) khi và chỉ khi \(MC^2=MA.MB\)

Hướng dẫn: 

Chiều thuận: \(MC\) là tiếp tuyến với đường tròn suy ra \(\widehat{MCA}=\widehat{MBC}\)

Xét \(\bigtriangleup MAC\) và \(\bigtriangleup MCB\) có \(\widehat{M}\) chung và \(\widehat{MCA}=\widehat{MBC}\) nên \(\bigtriangleup MAC \sim \bigtriangleup MCB\) (g.g)

suy ra \(\frac{MA}{MC}=\frac{MC}{MB} \Rightarrow MC^2=MA.MB\)

Chiều đảo: \(MC^2=MA.MB \Rightarrow \frac{MA}{MC}=\frac{MC}{MB}\)

Xét \(\bigtriangleup MAC\) và \(\bigtriangleup MCB\) có \(\widehat{M}\) chung và \(\frac{MA}{MC}=\frac{MC}{MB}\) nên \(\bigtriangleup MAC \sim \bigtriangleup MCB\) (c.g.c)

suy ra \(\widehat{MCA}=\widehat{MBC} \Rightarrow \widehat{MCA}=\frac{1}{2}\)sđ\(\stackrel\frown{AC}\)

Kẻ đường kính \(CD\) khi đó \(\widehat{MCA}+\widehat{ACD}=\frac{1}{2}\)\(\widehat{MCD}=\widehat{MCA}+\widehat{ACD}=\frac{1}{2}\)sđ\(\stackrel\frown{AC}\)+\(\frac{1}{2}\)sđ\(\stackrel\frown{AD}\)=\(90^0\)

Từ đó suy ra \(MC\) là tiếp tuyến của đường tròn \((O)\)

Bài 2: Cho hai đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) và \(B\). Tiếp tuyến tại \(A\) của đường tròn \((O’)\) cắt \((O)\) tại \(C\) và đối với đường tròn \((O)\) cắt \((O’)\) tại \(D\).

Chứng minh \(AB^2=BD.BC\)

Hướng dẫn: 

Trong đường tròn \((O)\) ta có \(\widehat{ACB}=\widehat{BAD}\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung chùng chắn cung \(BA\))

Tương tự trong đường tròn \((O’)\) ta cũng có \(\widehat{BDA}=\widehat{BAC}\)

Xét \(\bigtriangleup CAB\) và \(\bigtriangleup ADB\) có \(\widehat{ACB}=\widehat{BAD}\) và \(\widehat{BDA}=\widehat{BAC}\)

nên \(\bigtriangleup CAB\sim \bigtriangleup ADB\) suy ra \(\frac{CB}{AB}=\frac{AB}{DB}\Rightarrow AB^2=BD.BC\)