Bài 3: Rút gọn phân thức

 

Tóm tắt lý thuyết

1.1 Kiến thức cần nhớ

Muốn rút gọn phân thức ta có thể:

  • Phân tích cả tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
  • Chia cả tử và mẫu cho nhân tử chung.

( Việc phân tích đa thức thành nhân tử đã được học ở chương I, các em có thể xem lại các bài học ở chương I để nắm lại kiến thức.)

Bài tập minh họa


Bài 1: Rút gọn phân thức:

a. \(\frac{{12{x^3}y}}{{9{x^2}{y^4}}}\)

b. \(\frac{{4{x^3} + 20x}}{{{x^2} + 5}}\)

c. \(\frac{{14x{y^5}\left( {2x – 3y} \right)}}{{21{x^2}y{{\left( {2x – 3y} \right)}^2}}}\)

Hướng dẫn:

a.

\(\begin{array}{l} \frac{{12{x^3}y}}{{9{x^2}{y^4}}}\\ = \frac{{4x}}{{{y^3}}} \end{array}\)

b.

\(\begin{array}{l} \frac{{4{x^3} + 20x}}{{{x^2} + 5}}\\ = \frac{{4x\left( {{x^2} + 5} \right)}}{{{x^2} + 5}}\\ = 4x \end{array}\)

c.

\(\begin{array}{l} \frac{{14x{y^5}\left( {2x – 3y} \right)}}{{21{x^2}y{{\left( {2x – 3y} \right)}^2}}}\\ = \frac{{2{y^4}}}{{3x\left( {2x – 3y} \right)}} \end{array}\)

Bài 2: Rút gọn phân thức bằng cách đổi dấu hạng tử:

a. \(\frac{{12{x^2} – 8x}}{{40 – 60x}}\)

b. \(\frac{{8xy{{\left( {3x – 1} \right)}^2}}}{{12{x^3}\left( {1 – 3x} \right)}}\)

c. \(\frac{{\left( {{x^2} – xy} \right){{\left( {2x – 1} \right)}^3}}}{{\left( {5{y^2} – 5xy} \right){{\left( {1 – 2x} \right)}^2}}}\)

Hướng dẫn:

a.

\(\begin{array}{l} \frac{{12{x^2} – 8x}}{{40 – 60x}}\\ = \frac{{4x(3x – 2)}}{{ – 20\left( {3x – 2} \right)}}\\ = \frac{x}{{ – 5}}\\ = \frac{{ – x}}{5} \end{array}\)

b.

\(\begin{array}{l} \frac{{8xy{{\left( {3x – 1} \right)}^2}}}{{12{x^3}\left( {1 – 3x} \right)}}\\ = \frac{{2y{{\left( {1 – 3x} \right)}^2}}}{{3{x^2}(1 – 3x)}}\\ = \frac{{2y\left( {1 – 3x} \right)}}{{3{x^2}}} \end{array}\)

c.

\(\begin{array}{l} \frac{{\left( {{x^2} – xy} \right){{\left( {2x – 1} \right)}^3}}}{{\left( {5{y^2} – 5xy} \right){{\left( {1 – 2x} \right)}^2}}}\\ = \frac{{x\left( {x – y} \right){{\left( {2x – 1} \right)}^3}}}{{ – 5y\left( {x – y} \right){{\left( {2x – 1} \right)}^2}}}\\ = \frac{{x\left( {2x – 1} \right)}}{{ – 5y}}\\ = \frac{{x\left( {1 – 2x} \right)}}{{5y}} \end{array}\)

 

Bài 3: Rút gọn phân thức A bằng cách phân tích tử và mẫu thành nhân tử:

\(A = \frac{{8{x^2} – 8x + 2}}{{\left( {4x – 2} \right)\left( {15 – x} \right)}}\)

 

Hướng dẫn:

Ta có:

\(\begin{array}{l} A = \frac{{8{x^2} – 8x + 2}}{{\left( {4x – 2} \right)\left( {15 – x} \right)}}\\ = \frac{{2\left( {4{x^2} – 4x + 1} \right)}}{{2\left( {2x – 1} \right)\left( {15 – x} \right)}}{\rm{ }}\\ = \frac{{2{{\left( {2x – 1} \right)}^2}}}{{2\left( {2x – 1} \right)\left( {15 – x} \right)}}\\ = \frac{{2x – 1}}{{15 – x}}\\ \end{array}\)