Bài 12: Chia đa thức một biến đã sắp xếp

Tóm tắt lý thuyết

1.1 Kiến thức cần nhớ

Ví dụ: Thực hiện phép chia:

\((2{x^5} + 3{x^3} + x):(2{x^2} + 1)\)

Ta thực hiện như sau

Đầu tiên ta đặt phép chia:

\[\begin{array}{*{20}{c}}
{2{x^5} + 3{x^3} + x}\\
{\,\,\,}
\end{array}\left| {\begin{array}{*{20}{c}}
{2{x^2} + 1}\\
\hline
{\,\,\,}
\end{array}} \right.\]

Sau đó lấy hạng tử bậc cao nhất của đa thức bị chia chia cho hạng tử bâc cao nhất của đa thức chia:

\[2{x^5}:2{x^2} = {x^3}\]

Nhân thương vừa tìm được cho đa thức chia rồi lấy đa thức bị chia trừ cho tích vừa tìm được ta được dư thứ nhất.

\[\begin{array}{*{20}{l}}
{2{x^5} + 3{x^3} + x}\\
{\underline {2{x^5} + {x^3}\,\,\,\,\,\,\,\,\,\,\,} }\\
{\,\,\,\,\,\,\,\,\,\,\,\,2{x^3} + x}\\
{}\\
{}
\end{array}\left| {\begin{array}{*{20}{c}}
{2{x^2} + 1}\\
\hline
{{x^3}}\\
{}\\
{}\\
{}
\end{array}} \right.\]

Lấy hạng tử lũy thừa cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của đa thức chia ta được:

\[2{x^3}:2{x^2} = x\]

Thực hiện lại như bước trên ta được:

\[\begin{array}{*{20}{l}}
{2{x^5} + 3{x^3} + x}\\
{\underline {2{x^5} + {x^3}\,\,\,\,\,\,\,\,\,\,\,} }\\
{\,\,\,\,\,\,\,\,\,\,\,\,2{x^3} + x}\\
{\,\,\,\,\,\,\,\,\,\,\,\,\underline {2{x^3} + x} }\\
{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0}
\end{array}\left| {\begin{array}{*{20}{c}}
{2{x^2} + 1}\\
\hline
{{x^3} + x}\\
{}\\
{}\\
{}
\end{array}} \right.\]

Vì phần dư là 0 nên phép chia trên là phép chia hết.

Vậy kết quả của phép chia \((2{x^5} + 3{x^3} + x):(2{x^2} + 1)\) là \[{x^3} + x\];

Lưu ý:

  • Phép chia có số dư bằng 0 là phép chia hết.
  • Nếu phép chia có phần dư khác 0 ta thực hiện theo cách trên cho đến khi lũy thừa cao nhất của phần dư nhỏ hơn lũy thừa cao nhất của đa thức chia.

 

Bài tập minh họa


Bài 1 

Sắp xếp theo lũy thừa giảm dần của biến rồi thực hiện phép chia

\(\left( {x + 1 + 2{x^3} + {x^2}} \right):\left( {x – 1} \right)\)

Hướng dẫn:

Sắp xếp theo lùy thừa giảm dần của biến ta được \(2{x^3} + {x^2} + x + 1\)

Thực hiện phép chia ta được

Bài 2: Thực hiện phép chia sau và xác định thương và phần dư

\(\left( {2{x^3} – 3{x^2} + 6x – 4\,\,} \right):\,\,\left( {{x^2} – x + 3\,\,} \right)\,\)

 

Vậy ta tìm được thương là \(2x-1\) và phần dư là \(-x-1\)

Bài 3

Tìm giá trị nguyên của n để A chia hết cho B biết

\(A = 2{x^4} – {x^3} – {x^2} – x + n\,\,\,\,\,B = {x^2} + 1\)

Hướng dẫn:

 Thực hiện phép chia ta được

A chia hết cho B \( \Leftrightarrow n – 3 = 0 \Leftrightarrow n = 3\)

Vậy giá trị cần tìm là n = 3