Bài 9: Nghiệm của đa thức một biến

Tóm tắt lý thuyết

Nghiệm của đa thức một biến:

Nếu tại x=a đa thức P(x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức đó.

Nhận xét:

  • Một đa thức (khác đa thức 0) có thể có một nghiệm, hai nghiệm,…hoặc không có nghiệm nào.
  • Người ta chứng minh được rằng số nghiệm của một đa thức (khác đa thức 0) không vượt quá bậc của nó.

Ví dụ 1:

Kiểm tra xem mỗi số 1; 2; -1 có phải là 1 nghiệm của đa thức \(f(x) = {x^2} – 3x + 2\) hay không?

Hướng dẫn giải:

Ta có đa thức \(f\left( x \right) = {x^2} – 3x + 2\)

* Tại x=1 thì \(f\left( 1 \right) = {1^2} – 3.1 + 2 = 1 – 3 + 2 = 0\) nên x=1 là một nghiệm của đa thức f(x).

* Tại x=2 thì \(f\left( 2 \right) = {2^2} – 3.2 + 2 = 4 – 6 + 2 = 0\) nên x=2 là một nghiệm của đa thức f(x).

* Tại x=-1 thì \(f\left( { – 1} \right) = {( – 1)^2} – 3.( – 1) + 2 = 1 + 3 + 2 = 6 \ne 0\) nên x=-1 không là nghiệm của đa thức f(x).


Ví dụ 2:

Chứng tỏ rằng đa thức sau không có nghiệm.

a. \(P(x) = {x^2} + 1\)

b.\(Q(x) = (2{y^4} + 5)\)

Hướng dẫn giải:

a. Vì \({x^2} \ge 0\) nên \({x^2} + 1 \ge 1\). Do đó:

\(P(x) = {x^2} + 1 > 0\) nên đa thức P(x) không có nghiệm.

b. Vì\({y^4} \ge 0\)nên \(2{y^4} + 5 \ge 5.\). Do đó:

\(Q(x) = 2{y^4} + 5 > 0\) nên đa thức Q(x) không có nghiệm.


Ví dụ 3:

a. Giả sử a, b, c là những hằng số, sao cho a + b + c = 0. Chứng minh rằng đa thức \(f(x) = {a^2} + bx + c\) có một nghiệm là x=1.

Áp dụng để tìm một nghiệm của đa thức \(f(x) = 8{x^2} – 6x – 2.\)

b. Giả sử a, b, c là những hằng số, sao cho a – b + c = 0. Chứng minh rằng đa thức \(f(x) = a{x^2} + bx + c\) có một nghiệm là x=-1.

Áp dụng để tìm một nghiệm của đa thức \(f(x) = 7{x^2} + 11x + 4.\)

Hướng dẫn giải:

a. Ta có: \(f(1) = a{.1^2} + b.1 + c = a + b + c = 0\)

Vậy x = 1 là một nghiệm của đa thức f(x)

Ta có 8+(-6)+(-2)=0, nên: \(f(x) = 8{x^2} – 6x – 2\) có một nghiệm x = 1.

b. Ta có: \(f( – 1) = a.{( – 1)^2} + b.( – 1) + c = a – b + c = 0\)

Vậy x = -1 là một nghiệm của đa thức f(x).

Ta thấy \(7 – (11) + 4 = 0,\) nên:

\(f\left( x \right) = 7{x^2} + 11x + 4\) có một nghiệm x = -1.

Bài tập minh họa


Bài 1:

Tìm nghiệm của đa thức:

a. \({x^2} – 2003x – 2004 = 0\).

b. \(2005{x^2} – 2004x – 1 = 0\).

Hướng dẫn giải:

a. Đa thức \({x^2} – 2003x – 2004\) có các hệ số a = 1, b = -2003, c = -2004 và vì

a – b + c = 1 – (-2003) + (-2004)

=1 + 2003 – 2004 = 0

Nên đa thức \({x^2} – 2003x – 2004 = 0\) có một nghiệm là x = -1

b. Ta có a = 2005, b = -2004, c = -1

nên a + b + c = 2005 + (-2004) + (-1)

=2005 – 2005 = 0

Vậy đa thức \(2005{x^2} – 2004x – 1 = 0\) có một nghiệm là x = 1.


Bài 2:

Cho đa thức \(f(x) = {x^3} + 2{x^2} + {\rm{ ax}} + 1.\)

Tìm a biết rằng đa thức f(x) có một nghiệm x = -2.

Hướng dẫn giải:

Đa thức f(x) có một nghiệm x = -2 nên f(-2) = 0.

Hay: \(\begin{array}{l}{( – 2)^3} + 2.{( – 2)^2} + a.( – 2) + 1 = 0\\ =  – 8 + 8 – 2a + 1 = 0 \Rightarrow a = \frac{1}{2}\end{array}\)

Vậy \( \Rightarrow a = \frac{1}{2}\) thì f(x) có nghiệm x = -2.


Bài 3:

Cho đa thức \(f(x) = {a_n}{x^n} + {a_{n – 1}}{x^{n – 1}} + … + {a_1}x + {a_0}.\) Trong đó các hệ số \({a_1},{a_2},…,{a_n}\) và số hạng độc lập \({a_0}\) nhận các giá trị là các số nguyên. Chứng minh rằng nếu f(x) có một nghiệm \(x = {x_0}\) nhận giá trị nguyên thì \({x_0}\) phải là một ước của \({a_0}\).

Hướng dẫn giải:

Giả sử \(x = {x_0}\) là một nghiệm nguyên của f(x)

Ta có: \(f({x_0}) = {a_n}x_0^n + {a_{n – 1}}{x^{n – 1}} + … + {a_1}x + {a_0} = 0\)

Trong đẳng thức này, các số hạng của tổng là \({a_n}x_0^n,{a_{n – 1}}{x^{n – 1}},…,{a_1}\)đều chia hết cho \({a_0}\). Vậy \({a_0}\) cũng phải chia hết cho \({x_0}\) hay \({x_0}\) phải là một ước của \({a_0}\).