Bài 5: Tiên đề Ơ-clit về đường thẳng song song

Tóm tắt lý thuyết

1.1. Tiên đề Ơclit

Qua một điểm ở ngoài một đường thẳng chỉ có một đường thẳng song song với đường thẳng đó.

1.2. Tính chất của hai đường thẳng song song

Nếu một đường thẳng cắt hai đường thẳng song song thì:

a. Hai góc so le trong bằng nhau.

b. Hai góc đồng vị bằng nhau.

c. Hai góc trong cùng phía bù nhau.


Ví dụ 1: Hai đường thẳng x’x và y’y song song với nhau bị cắt bởi một một cát tuyến tại 2 điểm A và B. Gọi At là tia phân giác của \(\widehat {xAB}.\)

a. Tia At có cắt đường thẳng y’y hay không? Vì sao?

b. Cho \(\widehat {xAB} = {80^0}.\) Tính \(\widehat {ACB}.\)

Giải

a. Giả sử ta At không cắt y’y

Suy ra AC//y’y. Theo tiên đề Ơclit thì AC trùng với x’x. Điều này vô lý vì vậy tia At phải cắt y’y tại C.

b. Ta có:

\(\widehat {xAt} = \frac{1}{2}\widehat {xAB} = \frac{1}{2}{.80^0} = {40^0}\) (At là tia phân giác của \(\widehat {xAB}\)).

mà \(\widehat {xAt} = \widehat {ACB}\) (so le trong)

Vậy \(\widehat {ACB} = {40^0}.\)


Ví dụ 2: Cho hình bên, biết \(\widehat A = {50^0}\) và \(\widehat B = {140^0}\), Ax // By’. Chứng minh rằng \(\widehat {AOB} = {90^0}.\)

Giải

 

Kẻ qua O qua đường thẳng Oz // Ax, ta có: \(\widehat {AOz} = \widehat {xAO} = 50{}^0\)(góc so le trong)

Lại có: \(\widehat {OBy} = {150^0}\)
\( \Rightarrow \widehat {OBy} = {180^0} – {140^0} = {40^0}\)
\(Oz//Ax \Rightarrow Oz//By\)

\( \Rightarrow \widehat {BOz’} = \widehat {OBy} = {40^0}\) (góc so le trong)

Do đó: \(\widehat {AOz} = \widehat {z’OB} = {50^0} + {40^0} = {90^0}\) hay \(\widehat {AOB} = {90^0}.\)


Ví dụ 3: Cho hình bên, biết Ax // By. Chứng minh rằng \(\widehat A + \widehat B + \widehat C = {360^0}.\)

Giải

Kẻ qua C đường thẳng Cz // Ax ta có:

\(\widehat A + \widehat {ACz} = {180^0}\) (góc trong cùng phía bù nhau)

Lại có: \(Cz//Ax \Rightarrow Cz//By \Rightarrow \widehat B + \widehat {zCB} = {180^0}\) (góc trong cùng phía bù nhau)

\( \Rightarrow \widehat A + \widehat B + \widehat {ACz} + \widehat {zCB} = {360^0}\,\,\,\,hay\,\,\,\,\,\widehat A + \widehat B + \widehat C = {360^0}.\)

Bài tập minh họa


Bài 1: Cho góc xOy có số đo bằng \({30^0}\). Một điểm A thuộc Ox. Qua A dựng tia A’y // Oy và nằm trong góc xOy.

a. Tính OAy’.

b. Gọi Ot và At’ theo thứ tự là các tia phân giác của các góc xOy và xAy’. Chứng tỏ rằng Ot//At’.

Giải

a. Do Ay’ // Oy

\( \Rightarrow \widehat {xAy’} = \widehat {xOy} = {30^0}\) (góc đồng vị)

Lại có: \(\widehat {OAy’} = \widehat {xAy’} = {180^0}\) (góc kề bù)

\( \Rightarrow \widehat {OAy’} = {180^0} – \widehat {xAy’} = {180^0} – {30^0} = {150^0}\)

b. Do \(\widehat {xOy} = \widehat {xAy’}\) (chứng minh trên)

\( \Rightarrow \frac{{\widehat {xOy}}}{2} + \frac{{\widehat {xAy}}}{2}\,\,hay\,\,\widehat {{O_1}} = \widehat {{O_2}} \Rightarrow \,Ot\,//\,At’\) (góc đồng vị).


Bài 2: Cho \(xOy = {120^0}\) và \(Ot\) là tia phân giác của góc đó. Trên tia Oy lấy điểm A, qua A vẽ đường thẳng At’ // Ot.

a. Tính góc yAt’

b. Từ A dựng đường thẳng Ax’ song song với Ox. So sánh hai góc t’Ax’ và tOx.

Giải

a. Do \(Ot//\,At’ \Rightarrow \widehat {{O_1}} = \widehat {{A_1}}\) (góc so le trong) mà \(\widehat {{A_1}} = \widehat {{A_2}}\) (đối đỉnh) nên \(\widehat {{A_2}} = \widehat {{O_1}}\)

hay \(\widehat {yAt’} = \widehat {yOt} = {60^0}\) (vì Ot là phân giác \(\widehat {xOy} = {120^0}\)).

b. Vì \(\widehat {yAt’} = \widehat {yOt}\) (đồng vị)\( \Rightarrow At’\,\,//Ot.\)

Ax’ cắt Ot ở \(B \Rightarrow \widehat {t’Ax’} = \widehat {{B_1}}\) (đồng vị do At’ // Ot).

Mặt khác \(\widehat {tOx} = \widehat {{B_1}}\) (đồng vị do Ax’ //Ox)

Suy ra \(\widehat {t’AC} = tOx.\)