Bài 11: Tính chất cơ bản của phép nhân phân số

Tóm tắt lý thuyết

1.1. Các tính chất

Tương tự phép nhân số nguyên, phép nhân phân số có các tính chất cơ bản sau:

a. Tính chất giao hoán: \(\frac{a}{b}.\frac{c}{d} = \frac{c}{d}.\frac{a}{b}\)

b. Tính chất kết hợp: \(\left( {\frac{a}{b}.\frac{c}{d}} \right).\frac{p}{q} = \frac{a}{b}.\left( {\frac{c}{d}.\frac{p}{q}} \right)\)

c. Nhân với số 1: \(\frac{a}{b}.1 = 1.\frac{a}{b} = \frac{a}{b}\)

d. Tính chất phân phối của phép nhân đối với phép cộng:

\(\frac{a}{b}.\left( {\frac{c}{d} + \frac{p}{q}} \right) = \frac{a}{b}.\frac{c}{d} + \frac{a}{b}.\frac{p}{q}\)

1.2. Áp dụng

Do các tính chất giao hoán và kết hợp của phép nhân, khi nhân nhiều phân số, ta có thể đổi chỗ hoặc nhóm các phân số lại theo bất cứ cách nào sao cho việc tính toán được thuận tiện.

Ví dụ 1: Tính tích \(M = \frac{{ – 7}}{{15}}.\frac{5}{8}.\frac{{15}}{{ – 7}}.( – 16)\)

Giải

Ta có \(M = \frac{{ – 7}}{{15}}.\frac{{15}}{{ – 7}}.\frac{5}{8}.( – 16)\) (Tính chất giao hoán)

\( = \left( {\frac{{ – 7}}{{15}}.\frac{{15}}{{ – 7}}} \right).\left( {\frac{5}{8}.( – 16)} \right)\)   (tính chất kết hợp)

\( = 1.( – 10) =  – 10\) nhân với số 1


Ví dụ 2: Tính nhanh giá trị các biểu thức

\(A = \frac{6}{7} + \frac{1}{7}.\frac{2}{7} + \frac{1}{7}.\frac{5}{7}\)

\(B = \frac{4}{9}.\frac{{13}}{3} – \frac{4}{3}.\frac{{40}}{9}\)

Giải

\(A = \frac{1}{7}.\left( {6 + \frac{2}{7} + \frac{5}{7}} \right) = \frac{1}{7}.7 = 1\)

\(B = \frac{4}{9}.\left( {\frac{{13}}{3} – \frac{{40}}{3}} \right) = \frac{4}{9}.( – 9) =  – 4\)


Ví dụ 3: Áp dụng các tính chất của phép nhân phân số để tính nhanh.

\(M = \frac{8}{3}.\frac{2}{5}.\frac{3}{8}.10.\frac{{19}}{{92}}\)

\(N = \frac{5}{7}.\frac{5}{{11}} + \frac{5}{7}.\frac{2}{{11}} – \frac{5}{7}.\frac{{14}}{{11}}\)

\(Q = \left( {\frac{1}{{99}} + \frac{{12}}{{999}} – \frac{{123}}{{9999}}} \right).\left( {\frac{1}{2} – \frac{1}{3} – \frac{1}{6}} \right)\)

Giải

\(M = \left( {\frac{8}{3}.\frac{3}{8}} \right).\left( {\frac{2}{5}.10} \right).\frac{{19}}{{92}} = 1.4.\frac{{19}}{{92}} = \frac{{19}}{{23}}\)

\(N = \frac{5}{7}.\left( {\frac{5}{{11}} + \frac{2}{{11}} – \frac{{14}}{{11}}} \right) = \frac{5}{7}.\frac{{ – 7}}{{11}} = \frac{{ – 5}}{{11}}\)

\(Q = \left( {\frac{1}{{99}} + \frac{{12}}{{999}} – \frac{{123}}{{9999}}} \right).0 = 0\)

Bài tập minh họa


Bài 1: Tính giá trị biểu thức.

\(A = \frac{{{1^2}}}{{1.2}}.\frac{{{2^2}}}{{2.3}}.\frac{{{3^2}}}{{3.4}}.\frac{{{4^2}}}{{4.5}}\)

\(B = \frac{{{2^2}}}{{1.3}}.\frac{{{3^2}}}{{2.4}}.\frac{{{4^2}}}{{3.5}}.\frac{{{5^2}}}{{4.6}}.\)

Giải

\(A = \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5} = \frac{1}{5}\)

\(B = \frac{{2\,\,.\,\,3\,\,.\,\,4\,\,.\,\,5}}{{1\,\,.\,\,2\,\,.\,\,3\,\,.\,\,4}}\,\,.\,\,\frac{{2\,\,.\,\,3\,\,.\,\,4\,\,.\,\,5}}{{3\,\,.\,\,4\,\,.\,\,5\,\,.\,\,6}} = \frac{5}{3}\)


Bài 2: Tính nhanh

\(M = \frac{2}{{3\,\,.\,\,5}} + \frac{2}{{5\,\,.\,\,7}} + \frac{2}{{7\,\,.\,\,9}} + … + \frac{2}{{97.99}}\)

Giải

\(M = \left( {\frac{1}{3} – \frac{1}{5}} \right) + \left( {\frac{1}{5} – \frac{1}{7}} \right) + \left( {\frac{1}{7} – \frac{1}{9}} \right) + … + \left( {\frac{1}{{97}} –  \frac{1}{{99}}} \right)\)

\( = \frac{1}{3} – \frac{1}{{99}}\)

\( = \frac{{32}}{{99}}\)


Bài 3: Tính giá trị của  biểu thức

\(M = \frac{1}{{1.2.3}} + \frac{1}{{2.3.4}} + \frac{1}{{3.4.5}} + …. + \frac{1}{{10.11.12}}\)

Giải

Ta có nhận xét: \(\frac{1}{{1.2}} – \frac{1}{{2.3}} = \frac{{3 – 1}}{{1.2.3}} = \frac{2}{{1.2.3}}\)

\(\frac{1}{{2.3}} – \frac{1}{{3.4}} = \frac{{4 – 2}}{{2.3.4}} = \frac{2}{{2.3.4}};…\)

Suy ra \(\frac{1}{{1.2.3}} = \frac{1}{2}\left( {\frac{1}{{1.2}} – \frac{1}{{2.3}}} \right)\)

\(\frac{1}{{2.3.4}} = \frac{1}{2}\left( {\frac{1}{{2.3}} – \frac{1}{{3.4}}} \right);…\)

Do đó:

\(M = \frac{1}{2}\left( {\frac{1}{{1.2}} – \frac{1}{{2.3}} + \frac{1}{{2.3}} – \frac{1}{{3.4}} + …. + \frac{1}{{10.11}} – \frac{1}{{11.12}}} \right)\)

\( = \frac{1}{2}\left( {\frac{1}{{1.2}} – \frac{1}{{11.12}}} \right) = \frac{1}{2}\left( {\frac{1}{2} – \frac{1}{{11.12}}} \right)\)

\( = \frac{1}{2}.\frac{{65}}{{132}} = \frac{{65}}{{264}}\)