Ôn tập chương 4 Số phức

Tóm tắt lý thuyết

HỆ THỐNG HÓA KIẾN THỨC “SỐ PHỨC VÀ CÁC DẠNG TOÁN LIÊN QUAN”

Hệ thống hóa số phức và các dạng toán liên quan

Bài tập minh họa


Bài tập 1:

Tìm số phức z sao cho (1 +2i)z là số thuần ảo và \(\left | 2.z-\bar{z} \right |=\sqrt{13}\).

Lời giải:

Giả sử \(z=a+bi \ (a,b\in R)\).

Khi đó \((1+2i)z=(1+2i)(a+bi)=(a-2b)+(2a+b)i.\)

(1 +2i)z là số thuần ảo khi và chỉ khi: \(a-2b=0\Leftrightarrow a=2b\)

\(\left | 2.z-\bar{z} \right |=\left | a+3bi \right |=\left | 2b+3bi \right | =\sqrt{13b^2}=\sqrt{13}\Leftrightarrow b=\pm 1.\)

Vậy có hai số phức thỏa mãn đề bài: \(z=2+i;z=-2-i.\)

Bài tập 2:

Tìm phần thực và phần ảo của số phức z thoả mãn điều kiện \(z+(2+i)\bar{z}=3+5i.\)

Lời giải:

Giả sử \(z=a+bi(a,b\in R)\)
Ta có
\(z+(1+i)\bar{z}=3+5i\Leftrightarrow a+bi+(2+i)(a-bi)=3+5i\)
\(\Leftrightarrow 3a+b+(a-b)i=3+5i\)
\(\Leftrightarrow \left\{\begin{matrix} 3a+b=3\\ a-b=5 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=2\\ b=-3 \end{matrix}\right.\)
Vậy z=2-3i.

Do đó phần thực của z là 2 và phần ảo của z là –3.

Bài tập 3:

Cho hai số phức \(z_1,z_2\) thỏa mãn \(\left |z_1 \right |=\left |z_2 \right |=1,\left |z_1 +z_2 \right | =\sqrt{3}\). Tính \(\left |z_1 -z_2 \right |.\)

Lời giải:

Đặt: \(z_1=a_1+b_1i;z_2=a_2+b_2i \ (a_1,a_2,b_1,b_2 \in R)\)
\(\left\{\begin{matrix} \left | z_1 \right | =\left | z_2 \right |=1\\ \left | z_1 +z_2\right |=\sqrt{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} a^2_1+b^2_1=a^2_2+b^2_2=1\\ (a_1+b_2)^2+(b_1+b_2)^2=2 \end{matrix}\right.\)
\(\Leftrightarrow 2(a_1b_1+a_2b_2)=1\Rightarrow (a_1-a_2)^2+(b_1-b_2)^2=1\)
Vậy \(\left | z_1-z_2 \right |=1.\)

Bài tập 4:

Cho số phức z thỏa mãn điều kiện \((1+2i)z+(3+2i)\bar{z}=4+10i.\) Tìm môđun của số phức \(w=z+2\bar{z}.\)

Lời giải:

Đặt \(z=a+bi(a,b\in R)\Rightarrow \bar{z}=a-bi\)
Ta có \((1+2i)z+(3+2i)\bar{z}=4+10i\)
\(\Leftrightarrow (1+2i)(a+bi)+(3+2i)(a-bi)(a-bi)=4+10i\)
\(\Leftrightarrow 4a+(4a-2b)i=4+10i\Leftrightarrow \left\{\begin{matrix} 4a=4\\ 4a-2b=10 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=1\\ b=-3 \end{matrix}\right.\)
Do đó \(z= 1- 3i.\)
Ta có: \(w=z+2\bar{z}=1-3i+2(1+3i)=3+3i.\)
Suy ra môđun của w là \(\left | w \right |=\sqrt{3^2+3^2}=3\sqrt{2}.\)